Low Cost Propulsion Systems for Launch-, In Space- and SpaceTourism Applications

Space Propulsion (Rome, 02 - 06/05/2016)

Dr.-Ing. Peter H. Weuta Dipl.-Ing. Neil Jaschinski

WEPA-Technologies GmbH (Germany)

Introduction: WEPA-Technologies GmbH

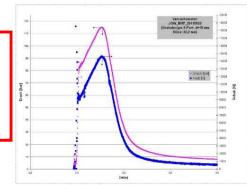
1. Introduction: WEPA-Technologies GmbH

 Mechanical Engineering, General Automation and Rocket Technology

- R&D focussed engineering office and manufacturing company
 - Planning, development and realization of non-standard solutions

- Manufacturing of prototypes and small lots
 - company owned 700 m² workshop
 - broad range of manufacturing technologies (CNC- and conventional machining)

Development Activities

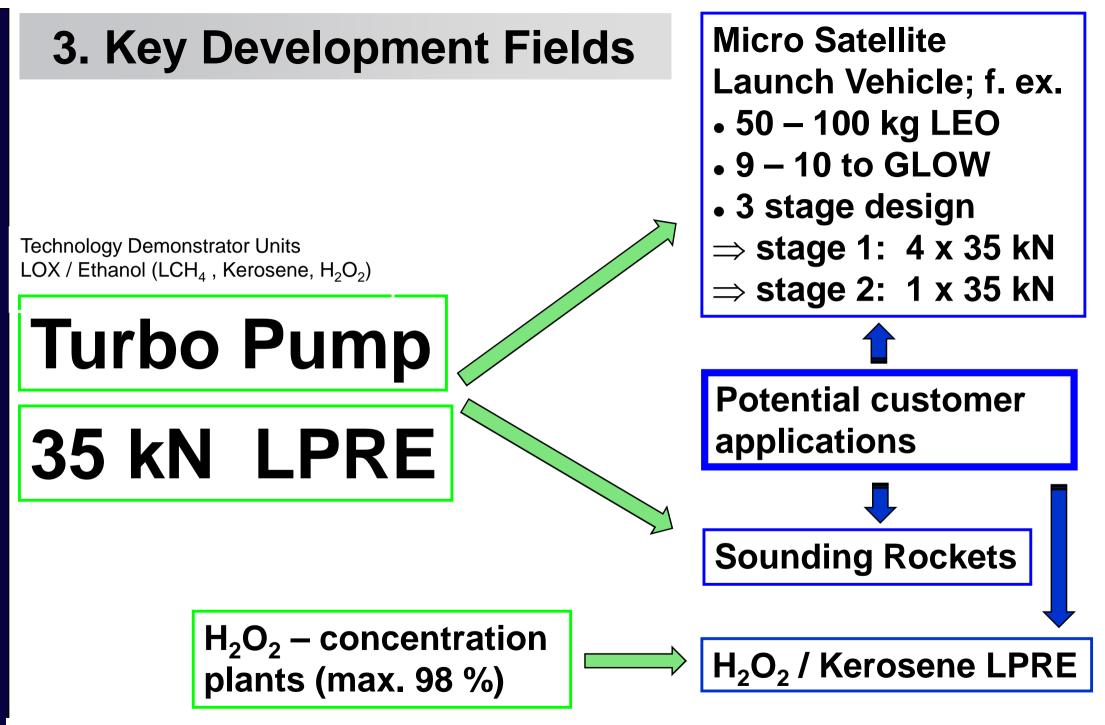

2. Development Activities (Rocket Technology)

Propulsion

- Liquid propellant rocket engines (LPRE)
- Turbo pumps for LPRE
- H₂O₂ concentration plants (max. 98 %)
- Solid rocket motors (SRM) (Chlorine free)

- Public references include...
 - CASSIDIAN GmbH (Airbus Defence & Space)
 - Dynamit Nobel Defence GmbH
 - EU-customer (H₂O₂ concentration plant)

CASSIDIAN (now: Airbus Defence & Space) contract development Solid rocket motors (thrust: up to 20 kN)



Development Strategy: Rocket Technology

3.1 Development Strategy

Low cost propulsion systems are (one) key component to realize low cost launch- and in space applications !

How to achieve low cost propulsion ?

- Simplified design of rocket engines and turbo pumps
- Moderate operational parameter (chamber pressure, temperature)
- Prefer industrial materials and matured manufacturing technologies instead of "high-tech"
- Prefer numbering-up instead of scale-up
 - Consider unification of propulsion system design for first and second launcher stages via clustering
- Environmentally benign and easy to handle propellant components
 - LOX resp. H₂O₂, EtOH, LCH₄, Kerosene => avoid NO₂ / N₂O₄ and hydrazine !
- Approach
 - <u>Expandable</u> engines: improve designs based on proven technologies (USA / USSR / Europe / Japan)
 - <u>Reusable</u> engines / turbo pumps: focus on (partially) ceramic systems

Development of Liquid Propellant Engines

4. Development of Liquid Propellant Engines

Technology demonstrator: Type 1

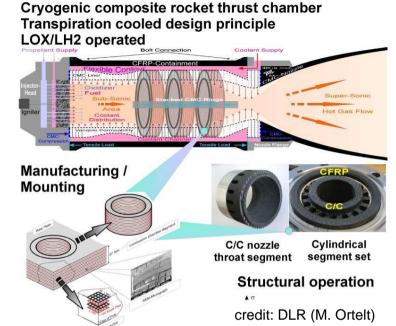
- Development of <u>expendable</u> rocket engines: <u>focus on metallic thrust chambers</u>
- Process Parameter (35 kN thrust @ SL)
 - Chamber pressure: 5 MPa
 - Propellant feed rate: ~ 14 kg / s (LOX + Ethanol)
- Design overview
 - Regenerative cooling
 - Use series production enabling technologies (welding / brazing)
 - Coaxial injector
- Increase to higher thrust classes depending on market demand

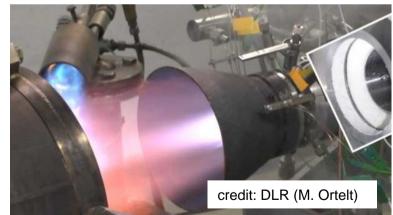
credit: J. Aurich (TU-Dresden 2015)

4.1 Development of Liquid Propellant Engines

Technology demonstrator: Type 2

- Development of <u>re-usable</u> rocket engines: <u>focus on ceramic thrust chambers</u>
- Ceramic thrust chambers are very promising candidates for multiple reusability
 - Low thermal expansion
 - System simplification \rightarrow cost reduction, high reliability
 - High specific strength at elevated temperatures
 - Oxidation resistance
 - Improved lifetime
 - Thermo-shock resistance
 - Thermal cycling ability
- Design overview
 - Use of highly effective transpirational cooling preferred
 - LOX + LCH₄ or Ethanol
 - Injector: coaxial type; use series production enabling technologies (welding / brazing)
- Process Parameter (35 kN thrust @ SL)
 - Chamber pressure: 5 MPa
 - Propellant feed rate: up to14 kg / s


Ref.: M. Ortelt. 2005. Effusion cooled CMC rocket thrust chamber. 56th International Astronautical Congress, Fukuoka, Japan.


4.2 Development of Liquid Propellant Engines

Ceramic Thrust Chamber

- Commercial exploitation of ceramic technology intended: WEPA – DLR joint evaluation of market potential in progress
 - long term experience with ceramic thrust chambers (DLR)
 - Multiple successful tests with LOX / LH₂ (GH₂)
 - Chamber pressures up to 100 bar / huge upside potential
 - Use of non-oxide and oxide ceramic matrix material (CMCs)
- Next steps: design / manufacturing of technology demonstrator engines using for LOX / LCH₄ and LOX / Ethanol

Ref.: M. Ortelt, H. Hald, A. Herbertz, I. Müller. 3 – 7 October 2011. Application potential of combined fibre reinforced technologies in rocket thrust chambers. 62nd International Astronautical Congress, Cape Town, South Africa.

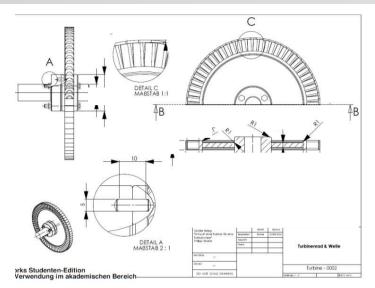
Ref.: M. Ortelt, H. Hald, I. Müller. 2014. Status and future perspectives of the CMC rocket thrust chamber development at DLR. 65th International Astronautical

Development of Turbo Pump Units

5. Development of Turbo Pump Unit – overview

- Technology demonstrator unit
 - Exit pressure: max. 75 bar
 - Max. 30,000 RPM; single shaft design
 - Open gas generator cycle (LOX / fuel)
 - Designed for reusability: focus on bearings
- Propellant systems: LOX / Ethanol and LOX / LCH₄
- Mass flow rate: ~ 12 14.5 kg/s (35 kN demonstrator engine)
- Weight: max. 25 kg (incl. gas generator + control unit)
- Arrangement: turbine fuel oxidizer

5.1 Development of Turbo Pump Unit – overview

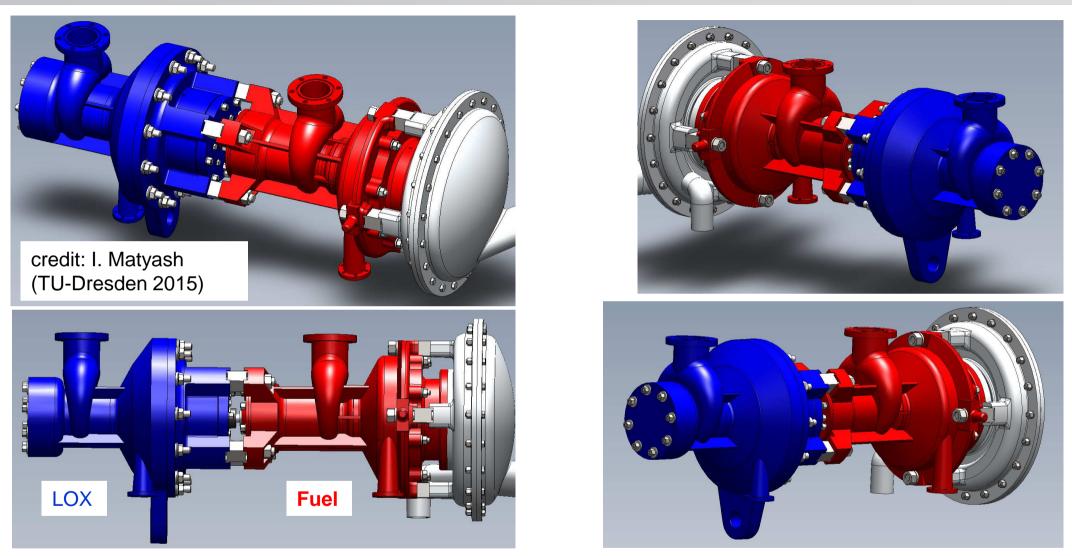

• Turbine

- single or double axial stage, impulse type
- partial admission of drive gas
- inlet temperature: < 850 K
- Pump
 - single radial stage
- Seals
 - dynamic type (majority)
- Bearings
 - ceramic material based
 - journal type transpirational lubrication

(collaboration with DLR and TU Kaiserslautern (Prof. Böhle))

- Status
 - First spinning tests of TPU to commence in Q3 2016 (electric drive)

Low Cost Propulsion Systems for Launch-, In Space- and Space Tourism Applications Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Space Propulsion 2016 / Rome



credit: Wolter / Zetschke

(TU-Dresden 2014)

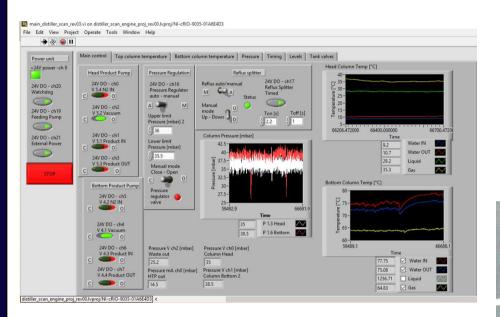
5.2 Development of Turbo Pump Unit – overview

Adaptation of technology demonstrator to requirements in H2020 / SMILE- project in progress (Small Innovative Launcher for Europe)

H₂O₂-Concentration Technology

6. Supply of H_2O_2 (88 - 98 %): Motivation

- Advantages of H₂O₂-based propulsion systems
 - Storability / no evaporative losses during pre-operation time
 - Simplified, non cryogenic feed system (turbo pump and pressure feeding)
 - No chill down of system prior to ignition required
 - Reliable, "hypergolic" ignition process (catalytic decomposition)
 - Multiple burns possible
 - No safety / toxicity issues compared to N_2O_4 / UDMH
 - Reduced system complexity => increased operational reliability !
- Use in many different propulsion systems possible
 - launchers, upper stages, sounding rockets, space planes, RCS
- Very high strength H₂O₂ required for high performance systems
 - H₂O₂ (95 %) / Kerosene does show <u>comparable overall system performance</u> with respect to LOX / Kerosene (=> higher density impulse of H₂O₂ system)
- <u>Limited commercial availability / high costs</u>, even though one large company entered pilot production of 98 % - grade in late 2015



6.1 Supply of H₂O₂ (88 - 98 %)

- H₂O₂ concentration plant developed by WEPA-Technologies (EUcustomer / 2015)
 - Capacity: up to ~ 50 kg / d (91 %)
 - Feed: 50 % 70 % H₂O₂
 - Fully automatic, 24 / 7 operability implementable
 - Working packages supplied by WEPA-Technologies
 - Conceptional process design incl. safety concept
 - Detail engineering (process-, control- and electrical diagrams)
 - Equipment purchase
 - Erection and commissioning
 - Trouble shooting
- Very safe production process up to 98 % concentration available (~ 50 kg / day)
 - Scale-up to 1500 kg H_2O_2 / day possible (set-up in 20 40 ft container)

6.2 Supply of H₂O₂ (91 %) : Plant

=> general commercialisation of H₂O₂ supply intended (88 – 98 %)

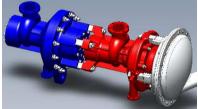
=> customer requests welcome !

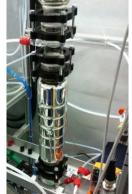
Development of Low Cost Propulsion Systems for Launch- and In Space Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 20; 2015-11-04

Control by PLC: LabVIEW RT (alternative: TWINCAT)

Summary

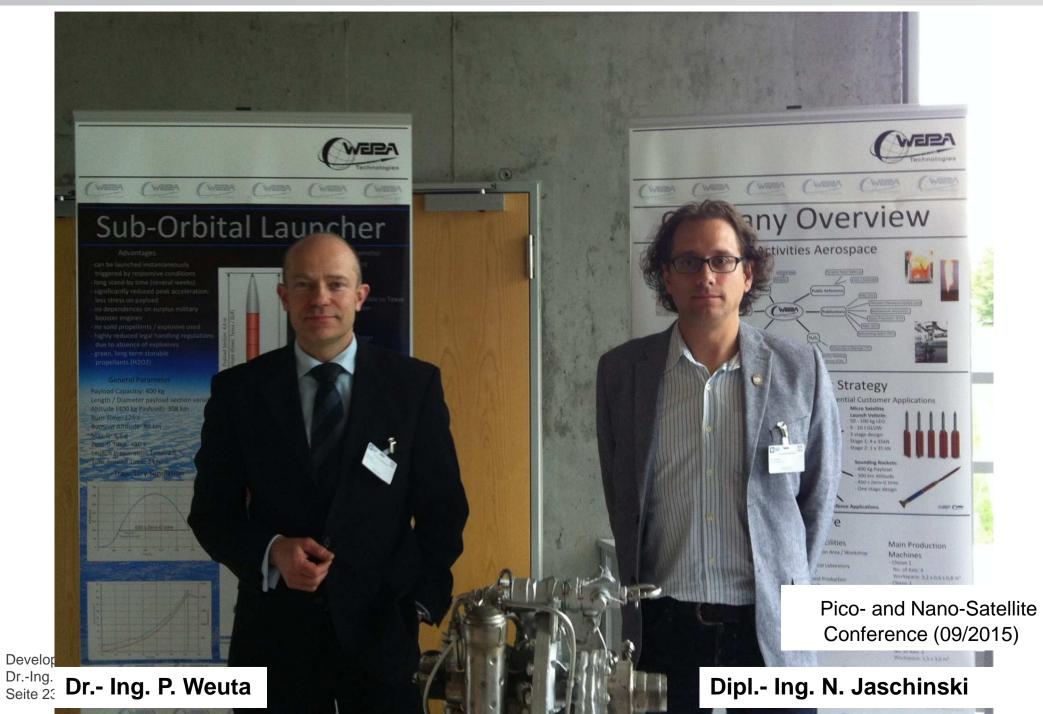
7. Summary: development activities at WEPA-Technologies


Liquid propellant rocket engines and turbo pump units


- Focus on low cost and potential re-usability
 - => ceramic materials: thrust chamber (transpiration cooling) resp. journal bearings
- Present: 35 kN LPRE technology demonstrator (LOX / Ethanol and LOX / LCH₄)
- Spinning tests of TPU (LOX / Ethanol) to commence in Q3 2016 (electric drive)
- Adaptation of technology demonstrator to requirements of H2020 / SMILE- project in progress (Small Innovative Launcher for Europe)

• H₂O₂

- Significant facilitation of development and reliable operation of propulsion systems however: difficult supply situation at concentrations > 70 %
- On-site concentration unit available to enable flexible project activities
 - Key features
 - > Very safe production process up to 98 % concentration available
 - > fully automatic, 24 / 7 operability implementable
 - > reference plant available : ~ 50 kg / day capacity / 91 % H_2O_2
- Production technology scalable up to ~ 1500 kg H_2O_2 / day


=> customer requests welcome !

Thank you for your attention !

peter.weuta@wepa-technologies.de www.wepa-technologies.de