Preliminary, experimental studies to develop a Micro Satellite Launch System

Pico- and Nanosatellite Workshop University of Würzburg, 2013-09-03

Dr.-Ing. Peter H. Weuta Dipl.-Ing. Neil Jaschinski

WEPA-Technologies GmbH

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 1; 2013-09-03

Overview

WEPA-Technologies GmbH

- Introduction
- Business activities
- Project 'Micro Launch Vehicle'
 - Is there a demand ?
 - Low cost design
 - Preliminary concept
 - Development process
 - Adaptation to user requirements
 - Development costs / pricing
 - Development approach
- Suborbital Launch Vehicle
 - Summary
 - Flight parameter
 - Adaptation to user requirements
 - Timeline / pricing

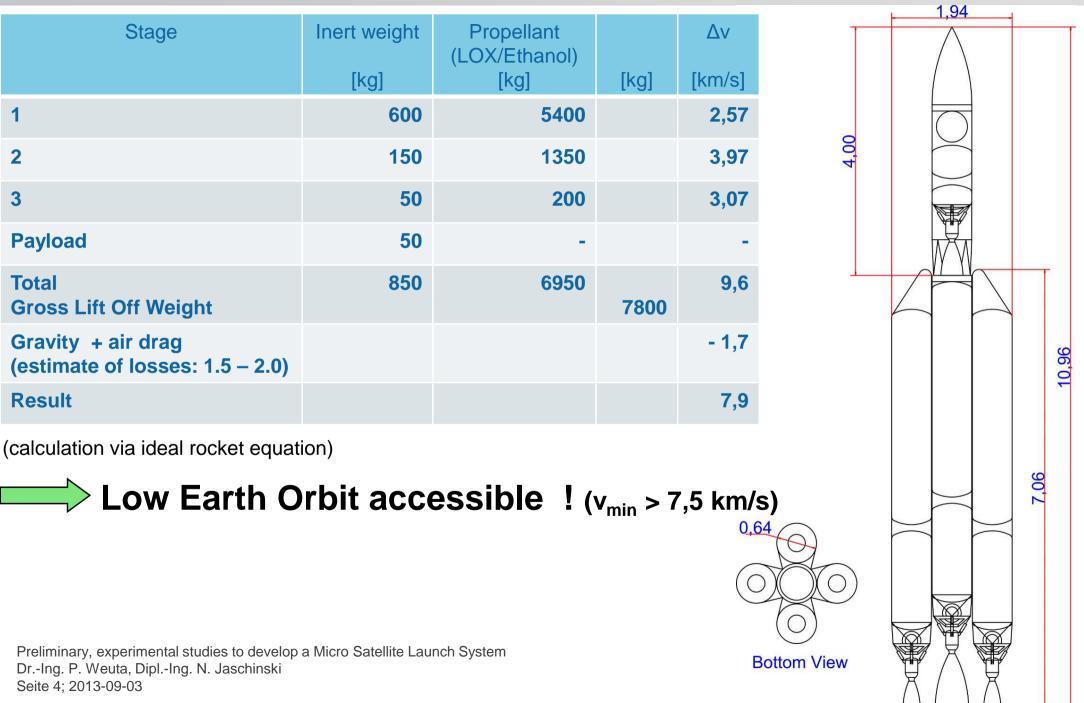
- Summary

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 2; 2013-09-03

Summary

Micro Launch Vehicle

- 50 kg to LEO
- High flexibility (lead time, orbit, payload structure)
- No disadvantages as nowadays secondary payload rides
- Could assure independent, small lead time, European space access
- Projected to be a low cost launcher (30 k€ / kg ?)
 - Market analysis and cost estimate to be detailed
- Uses standard technology and benefits of series / mass production
- Development time (to maiden flight): 5 a (after completion of team)


Suborbital Launch Vehicle

- Spin-off from Micro Launch Vehicle development
- 50 kg to 300 km altitude (modification possible)
- High flexibility (lead time, flight profile, payload structure)
- Fast, iterative development cycles of payload possible
- Maiden flight (prototype): ~ 2014 2015

=> Your input is required to most efficiently develop a service / product meeting customer / community needs ! Let's talk about it...
=> The projects do need additional parties to be completed !

Micro Launch Vehicle – preliminary concept

Suborbital Launch Vehicle – flight parameter

• Wide range of flight parameter realizable

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 5; 2013-09-03

Introduction: WEPA-Technologies GmbH

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 6; 2013-09-03

Introduction

Background

- Founded in 2011 via spin-off ex Fa. Behrent (mechanical engineering)

Company focus

- Engineering-, Automation- and Aerospace-Solutions

=> R+D focussed engineering office and manufacturing company

Business Activities

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 8; 2013-09-03

Business Activities

Generell

- Planning, development and realization of non-standard solutions
- Manufacturing of prototypes and small lots (company owned workshop)
- Broad range of manufacturing technologies
 - CNC-machining
 - > Turning (max. 1.4 m diameter x 4 m length) (up to 4 axis)
 - Milling (max. 3.0 m x 0.8 m x 0.8 m) (up to 5 axis)
 - Metal spinning
 - > Wire eroding
 - Conventional machining
 - > Grinding, welding, sheet metal work
- Refences include…
 - CASSIDIAN GmbH (EADS): development of solid rocket motor (up to 2 to thrust)
 - Dynamit Nobel Defence GmbH

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 9; 2013-09-03

Business Activities

Business and development segments

- Engineering
 - Construction and manufacturing of mechanical parts
- Automation
 - Focus on control retrofits in CNC-machine tools
- Rocket technology

(=> Partially joint development in cooperation with FAR)

- Propulsion
 - Solid rocket motors (SRM)
 - Liquid propellant rocket engines (LPRE)
 - Turbo pumps for LPRE
 - Thrust vector control
- Complete systems
 - Suborbital rockets
 - Orbital rockets / "Micro Launch Vehicle"

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 10; 2013-09-03

solid rocket motor test (thrust: 1,3 to)

Business Field Rocket Technology (LPRE)

- Development of Liquid Propellant Rocket Engines (LPRE)
 - Goal: building of low cost engines
 - Significant reduction of development and production costs required
 - Approach: improve designs based on proven technologies USA / USSR 1950 1970)
 - Use of 'green propellants' (LOx / EtOH)
 - No significant environmental issues (test & launch area)
 - Thrust class: 1.5 6 to (increase to 10 20 to mid term goal)
 - Potential fields of use
 - Sounding rockets
 - Launch vehicles

USSR 1960 (SA-2 rocket engine, 3.4 to thrust)

Project ,Micro Launch Vehicle'

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 12; 2013-09-03

Micro Launch Vehicle: is there a demand ?

Todays standard launch service for micro satellites:

=> Secondary payload flights !

Characteristics of "secondary payload" flights

- Launch time and orbit depending on primary payload
- Usually significant lead time (> 1a)
- Additional costs for installation / adaptation of payload
- Significant restrictions concerning nature of payload

Significant percentage of flights are offered by non European agencies:

 Development of an European Micro Launch Vehicle will facilitate independent access to space !

=> We are convinced, there is a significant demand for low cost, primary payload flights !

Micro Launch Vehicle: is there a demand ?

Advantages of personalized, non "secondary payload" flights

- High flexibility
 - Orbit
 - Short lead time to launch date
 - no more sudden delays or cancellations
 - Short, iterative development cycles of payload possible
 - Payload mass
- Restrictions concerning payload composition significantly lowered
 - Chemicals onboard
 - Biological agents
 - Pyro deloyment features
 - High energy radio emission
 - Active chemical propulsion !
 - \Rightarrow in standard launch system most likely 'no go' issues !

Micro Launch Vehicle - Iow cost design

- Launch costs do consist of different parts
 - Development activities
 - Construction (complete vehicle)
 - Launch procedure / ground support

=> to successfully design, build and operate a true 'low cost launch vehicle' the relevance of all issues has to be considered from the start !

- Traditional approach in Rocketry ,,not a true low cost design"
 - Optimization of engine performance
 - High pressures
 - Different (and toxic ?) fuels in each stage
 - Clustering of (identical) engines and stages only used occasionally
 - Extreme minimization of empty mass / exotic materials
 - Use of highly specialized parts

Micro Launch Vehicle - low cost design

General design principles

- Based on proven, historic technologies advanced by modern standard materials and production technologies
 - Avoid modern 'high end materials'
- Preferred use of standard, mass production parts (very few custom tailored parts used)
 - In-house manufacturing of key propulsion components
- Micro launch vehicle designed to three stages
 - Provides higher margins and enables use of 'low tech' approaches (propulsion, construction materials)
- Commonality approach: maximum use of identical parts in all rocket stages
 - Very similar propulsion technology in stage 1 + 2, prefer 'numbering up' / 'clustering' instead of scale up (use turbo pump feed system) !
- Propulsion of Stage 3 is restartable (use pressure feed system)
 - improved orbit insertion capabilities

• Environmentally friendly and easy to handle fuel combination (LOx / EtOH)

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 16; 2013-09-03

Micro Launch Vehicle - Iow cost design

General design principles

- Ground support based on mobile, standard transportation systems (40 ft sea container)
 - Mobile Mission control
 - Mobile 'transport / erector / launcher' unit
 - Horizontal assembly procedure of launcher
 - Erection of launcher prior to fuelling and countdown
 - Small mechanical workshop, electrical generator
- Payload section can be send to customer for pre-launch preparation
- All units can be transported easily via truck
- Launch can be conducted at any location meeting safety requirements !

=> No expensive launch pad has to be provided !

Micro Launch Vehicle - preliminary concept

Stage	Inert weight	Propellant (LOX/Ethanol)		Δv		1,94		
	[kg]	[kg]	[kg]	[km/s]				
1	600	5400		2,57		\square		
2	150	1350		3,97	4,00			
3	50	200		3,07				
Payload	50	-		-				
Total Gross Lift Off Weight	850	6950	7800	9,6		4	\sum	
Gravity + air drag (estimate of losses: 1.5 – 2.0)				- 1,7				10,96
Result				7,9				
(calculation via ideal rocket equation)								
Low Earth Orbit accessible ! (v _{min} > 7,5 km/s)								7,06
Isp values (95 % overall efficiency assumed):								

Bottom View

- stage 1: 249 s @ sea level (45 bar / expansion to 0,5 bar)
- stage 2: 307 s @ > 20 km (45 bar / expansion to 0,05 bar)
- stage 3: 285 s @ > 20 km (15 bar / expansion to 0,05 bar)

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 18; 2013-09-03

Micro Launch Vehicle - Challenging development process

Multiple disciplines involved

- Propulsion
 - thrust chambers
 - feeding system (turbo pump / pressure feeding)
 - thrust vector control
 - tanks
- Structures
- Guidance, navigation + control
- Data downlink
- Aerodynamics
- Flight stability
- Legal aspects
- Launch operations

At present preferred development focus of WEPA-Technologies + FAR !

=> Cooperation with other parties obligatory to complete the project ! Please contact us ...

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 19; 2013-09-03

Micro Launch Vehicle – adaptation to user requirements

- Multiple options to detail design of launcher
 - Payloads (mass, composition, size)
 - Max. allowable acceleration ?
 - Ejection techniques
 - Max. altitudes / suborbital paths required
 - Flight profile (fast or slow ascend)
 - Response time accepted to launch vehicle
 - Launch sites
 - Other requirements...

=> Your input is required to develop a service / product to meet customer / community needs in the most efficient way ! Let's talk about it ...

Micro Launch Vehicle - development costs / pricing

- Pricing
 - Due to a preliminary concept drafted so far, only a first estimate can be given
 - Strongly depending on several factors
 - Final design of launch vehicle and development costs
 - Intensity of test stand testing required and number of qualification flights
 - Private and / or public funding granted

=> Goal: 1.5 Mio € / 50 kg payload to LEO (30 k€ / kg

- Development costs
 - 15 Mio € ? (first estimate)
 - Payback possible scenario: 7 years / 8 launches per year ?
 - 56 x 315 k€ / launch = 17,6 Mio Eu (15 Mio Eu + 5 % / a interest)

=> Detailed market analysis has to be completed

Micro Launch Vehicle – development approach

Incremental development process of launcher technology

- Timeline
 - First prototype of main engine (3 or 4 to thrust): 2014
 - => <u>Development already in progress</u>
 - Maiden flight of complete launcher: ~ 5 a development time ?

=> Start of experimental activities after completion of team !

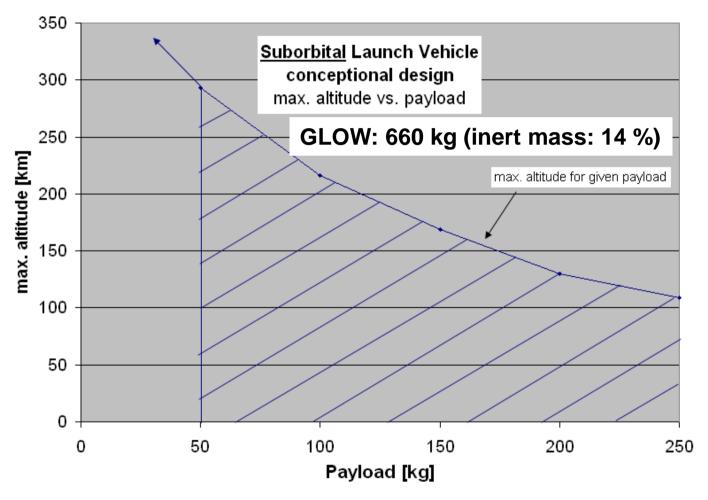
- => Schedule strongly depending on funding and size of team established !
- Micro launcher designed to three stages
 - Use 2. stage to develop / validate key technology fields
 - Result of test campaigns will have huge impact on design of launch vehicle

Use upper stages as low cost experimental base ?

=> "Suborbital Launch Vehicle" to serve nano- and micro-satellite community

Suborbital Launch Vehicle

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 23; 2013-09-03


Suborbital Launch Vehicle – summary

- High altitude launch service for Satellites
 - Offer frequent opportunity to Nano- and Micro-Satellite community to prequalify their experiments / technology during suborbital flights !
 - altitudes up to 300 km projected (50 kg payload)
 - => Significant progress compared to cost and time basis needed to test items in orbit
- Restrictions concerning payload significantly lifted
 - Chemical
 - Biological agents
 - Active propulsion !
 - => All in standard launch systems most likely 'no go' criteria !
- Variable flight profiles / max. altitudes can be realized on demand

Suborbital Launch Vehicle – flight parameter

Wide range of flight parameter realizable

Isp (Lox / EtOH, 95 % overall efficiency assumed):

• 249 s @ sea level (45 bar / expansion to 0,5 bar)

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 25; 2013-09-03

Suborbital Launch Vehicle

- adaptation to user requirements -

- Multiple options to detail design of suborbital launch vehicle
 - Payloads (mass, composition, size)
 - Ejection techniques
 - Max. altitudes / suborbital paths
 - Zero- / micro-g time
 - Flight profile (fast resp. slow ascend)
 - Recovery options (slow resp. fast decend vs. no recovery)
 - Response time accepted to launch vehicle
 - Launch sites
 - Other requirements...

=> Your input is required to most efficiently develop a service / product meeting customer / community needs ! Again: lets talk about it

Suborbital Launch Vehicle – timeline / pricing

Timeline

- First flight of vehicle (prototype): ~ 2014 2015
- => schedule strongly depending on size of team established
- Pricing
 - Due to a very preliminary concept drafted so far, only a first estimate can be given
 - Strongly depending on several factors
 - Final design of suborbital launch vehicle and development costs
 - Intensity of test stand testing required and number of qualification flights
 - Private and public funding granted
 - => Goal: 180 220 k€ / 50 kg payload up to 300 km altitude (3.6 – 4.4 k€ / kg)

=> Detailed market analysis has to be completed

Summary

Micro Launch Vehicle

- 50 kg to LEO
- High flexibility (lead time, orbit, payload structure)
- No disadvantages as nowadays secondary payload rides
- Could assure independent, small lead time, European space access
- Projected to be a low cost launcher (30 k€ / kg ?)
 - Market analysis and cost estimate to be detailed
- Uses standard technology and benefits of series / mass production
- Development time (to maiden flight): 5 a (after completion of team)

Suborbital Launch Vehicle

- Spin-off from Micro Launch Vehicle development
- 50 kg to 300 km altitude (modification possible)
- High flexibility (lead time, flight profile, payload structure)
- Fast, iterative development cycles of payload possible
- Maiden flight (prototype): ~ 2014 2015

=> Your input is required to most efficiently develop a service / product meeting customer / community needs ! Let's talk about it...
=> The projects do need additional parties to be completed !

Thank you for your attention !

info@wepa-technologies.de www.wepa-technologies.de

Preliminary, experimental studies to develop a Micro Satellite Launch System Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 29; 2013-09-03

Forschungsgemeinschaft Alternative Raumfahrt

Preliminary, experimental studies to develop a Micro Satellite Launch System

PINA 2013 conference at University of Würzburg

09/03/2013

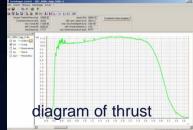
Dr. rer. nat. David Madlener Dipl.-Ing. (FH) Michael Witthaus Dipl.- Ing. Neil Jaschinski Dr.- Ing. Peter H. Weuta (first chairman, FAR)(second chairman, FAR)(WEPA-Technologies GmbH, FAR)(WEPA-Technologies GmbH, FAR)

Research Community for Alternative Space Flight Forschungsgemeinschaft Alternative Raumfahrt

Overview of FAR

- Founded in 1990'ies (community of interest)
- Registered society (e.V.) since 2003
- 25 members (majority with university degree)
 - qualifications: amateur radio, avionics, telemetry, propellant production MSR/SPS, CFK/GFK-technologies

Motivation


Civil exploration and use of space

Development of a cost-effective and environmentally friendly launch vehicle (project: µ-Launch)

Hybrid rocket motor test

Previous projects

INA V

DPU

- Development of hybrid- and solid-rocket motors
- Construction of test stands
- Development of sounding rockets (ARGUNA-Family)
- Organization of launch campaigns
- Development of experimental payloads
 - Data logger and control unit (DPU)
 - GPS- and telemetry (TELE)
 - Magnetic compass (COMPASS, cooperation with STDA/TU Darmstadt)

OPTO

- Optical horizon detection (OPTO)
- Inertial navigation platform (INA)

ARGUNA 3 LAUNCH

ARGUNA 1 RECOVERY

<u>Current focus</u>

- Quest for larger testing grounds (e.g. military area)
- Looking for supporters in government, academia and industry
- Member seeking
- Collaboration with universities

ARGUNA 4

Future research priorities

- Test with guided parachute
- Test of attitude control system
- Tracking by telemetry, radar and optics
- Development of experiments for upper atmosphere

PAYLOAD

Forschungsgemeinschaft Alternative Raumfahrt

µ-Launcher (Micro Satellite Launch Vehicle)

PINA 2013 conference at University of Würzburg 09/03/2013

Dr. rer. nat. David Madlener Dipl.-Ing. (FH) Michael Witthaus Dipl.- Ing. Neil Jaschinski Dr.- Ing. Peter H. Weuta (first chairman, FAR)(second chairman, FAR)(WEPA-Technologies GmbH, FAR)(WEPA-Technologies GmbH, FAR)

Why µ-Launcher ?

Benefits of µ-satellites

- Short development time
- Non-expensive test possible in space (e.g. for electronics)
- Less financial risk
- Launch of swarm systems possible (larger systems replaced)
- Support in research and education
- Motivation for students, radio hams , space enthusiasts
- Complementary research objectives

Current micro-satellites are secondary payloads !

- Launch time and orbit depends on primary payload
- Long delays are possible (>1year)

µ-SAT "UWE 1

- Additional costs for adapting and installation
- Primary payload contractors are not interested
- Launch providers do not support secondary payloads

<u>General</u>

- Launcher project can give support and innovative impulses for education and industry
- Synergies can develop and expand between different economic fields

PINA 2013

Why µ-Launch ?

We think...

Increased demand of small mass launch capabilities will reduce launch costs
Trend towards miniaturization of electronics will further promote need for smaller satellites

Barriers for rocket projects in Europe

- regulations, laws, and permissions

... not technical challenges !

PINA 2013

Regulations...

The legal aspect is significant !

Space flight depends on political decisions !

Permissions take a long time period

The best current solution is to launch rockets in international waters !

e.g. Copenhagen Suborbital (Denmark)

PINA 2013

Features of µ-Launcher

- Transport ability to LEO (< 400km)
- Satellites up to 50 kg
- Non-expensive/simplified construction
- Environmentally friendly propellants (LOx / Ethanol)
- Short interval from booking to launch

=> see Presentation of WEPA-Technologies for details !

Forschungsgemeinschaft Alternative Raumfahrt 2013

Thank you for your attention !