Development of Low Cost Propulsion systems for Micro-Satellite Launch Vehicles

Space Propulsion 2014

Cologne, 2014-05-20

Dr.-Ing. Peter H. Weuta Dipl.-Ing. Neil Jaschinski

WEPA-Technologies GmbH

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 1; 2014-05-20

Overview

WEPA-Technologies GmbH

- Introduction
- Business activities
- Project 'Micro Satellite Launch Vehicle'
 - Is there a demand ?
 - Low cost design
 - Preliminary concept
 - First simulation results
- Current development activities
 - Turbo Pump Unit
 - Liquid Propellant Rocket Engine
- Suborbital Launch Vehicle
- Supply of H_2O_2 (max. 97 %)

Introduction: WEPA-Technologies GmbH

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 3; 2014-05-20

Introduction: WEPA-Technologies GmbH

- Background
 - Founded in 2011 via spin-off (origin: mechanical engineering company)
- Company focus
 - Engineering-, Automation- and Aerospace-Solutions

Business premises

- 700m² work shop
- 150 m² office space

=> R&D focussed engineering office and manufacturing company

Business Activities

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 5; 2014-05-20

Business Activities (Manufacturing)

Generell

- Planning, development and realization of non-standard solutions
- Manufacturing of prototypes and small lots (company owned workshop)
- Broad range of manufacturing technologies
 - CNC-machining
 - **Turning (max. 1.4 m diameter x 4 m length)** (up to 4 axis)
 - Milling (max. 3.0 m x 0.8 m x 0.8 m) (up to 5 axis)
 - Metal spinning
 - > Wire eroding
 - Conventional machining
 - > Grinding, welding, sheet metal work
- Refences include…
 - CASSIDIAN GmbH (AIRBUS DEFENCE AND SPACE): development of solid rocket motor (up to 2 to thrust)
 - Dynamit Nobel Defence GmbH

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 6; 2014-05-20

Business Activities (Products & Services)

Business and development segments

- Rocket technology (development)
 - Propulsion

2

- Liquid propellant rocket engines (LPRE)
- Turbo pumps for LPRE
- Solid rocket motors (SRM)
- Complete systems
 - Suborbital rockets
 - ("Micro-Satellite Launch Vehicle")
- Engineering (business)
 - Construction and manufacturing of mechanical parts
- Automation (business)
 - Focus on control retrofits of CNC-machine tools

solid rocket motor test (thrust: 20 kN)

Micro Satellite Launch Vehicle

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 8; 2014-05-20

Micro Satellite Launch Vehicle: is there a demand ? 1

Today's standard launch service for micro satellites:

=> Secondary payload flights !

Characteristics of "secondary payload" flights

- Launch time and orbit depending on primary payload
- Usually significant lead time (> 1a)
- Additional costs for installation / adaptation of payload
- Significant restrictions concerning nature of payload

Significant percentage of flights are offered by non European agencies:

 Development of an European Micro Launch Vehicle will facilitate independent access to space !

=> We are convinced, there is a significant demand for low cost, primary payload flights ! (at present no availability !)

Micro Satellite Launch Vehicle – Iow cost approach 2

General design principles

- Based on proven, historic technologies advanced by modern standard materials and production technologies
 - => Avoid modern 'high end materials'
- Preferred use of standard, mass production parts (very few custom tailored parts used)
 - In-house manufacturing of key propulsion components
- Designed to three stages
 - => Provides higher margins and enables use of 'low tech' approaches (propulsion, construction materials)
- Commonality approach: maximum use of identical parts in all rocket stages
 - => comparable propulsion technology in stage 1 + 2, prefer 'numbering up' / 'clustering' instead of scale up (use turbo pump feed system) !
- Propulsion system of stage 3 is restartable (use pressure feed system)
 => improved orbit insertion capabilities

• Environmentally friendly and easy to handle fuel combination (LOX or H2O2 / EtOH)

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 10; 2014-05-20

Micro Satellite Launch Vehicle – conceptional design 3

General remarks

- Payload requirement: 50 100 kg to LEO (Micro Satellites, equipment, etc.)
- Design driven by low cost, not performance !
- Basic structure: 3 stages
- Propellants: LOX ; EtOH (base case, all stages)
- Use of H₂O₂ (85; 95 %) in all stages considered advantages especially within upper stages:
 - Storability / no evaporative losses during pre-operation time
 - Simplified, non cryogenic feed system (turbo pump resp. pressure feeding)
 - No chill down of system prior to ignition required
 - Reliable, "hypergolic" ignition process
 - Multiple burns possible (=> advantage to achieve precise orbital insertion !)
 - No safety / toxicity issues compared to N₂O₄ / UDMH (standard hypergol !)

=> Reduced system complexity / increased operational reliability !

Micro Satellite Launch Vehicle – conceptional design 4

Boundary conditions of design cases (different oxidizer)

- Outer envelope kept constant
 - Stage 1: d = 1.61 m
 - Stage 2: d = 1.06 m
 - Stage 3: d = 0.72 m
 - => total height: 15.2 m
- Propulsion parameter

Stage	Thrust	Pressures			Efficiency	lsp		
						LOx/	H2O2 (85 %)	H2O2 (95 %)/
		p(chamber)	p(nozzle exit)	p(ambient)		EtOH (96%)	EtOH (96%)	EtOH (96%)
[-]	[kN]	[MPa]	[MPa]	[MPa]	[%]	[\$]	[\$]	[S]
1	I 4 X 35	5	0,05	0,1	95	255	227	237
4	2 1 X 35	5	0,005	0,005	95	313	278	292
	3 1 X 10	1	0,001	0,001	95	310	278	291
(calculated)	via RPA-Soft	ware)						

ideal rocket equation used to determine final velocity (v_{min} = 7,5 + 2,0 = 9,5 km / s)

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 12; 2014-05-20

Micro Satellite Launch Vehicle – propulsion system 5

Performance summary

1		1	1			
Stage	Propellan		-			
	(fuel: all stage	s EtOH)			-	
1	LOX	LOX	LOX	H2O2 85 %	_	
2	LOX	LOX	H2O2 95 %	H2O2 95 %	-	
3	LOX	H2O2 95 %	H2O2 95 %	H2O2 95 %	-	
GLOW [t]	11,0	11,0	11,3	13,7	_	
Payload (LEO) [kg]	72	73	72	71	-	
Payload (LEO) [% GLOW]	0,65	0,66	0,64	0,52	_	
			oute	r envelope = co	onst.	
H2O2 driven upper stage	s:		(diar	(diameter, height)		
reduced system complexit	ty / increased	operational ı	reliability !			
					-	

=> In terms of payload the use of 95 % H₂O₂ is equivalent to LOX, but comes along with significant advantages !

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 13; 2014-05-20

Micro Satellite Launch Vehicle – propulsion system

Performance summary of selected design cases

Stage	Propellant combinations			outer envelope = const (diameter, height)		
	(fuel: all stages EtOH)					
1	LOX	LOX	LOX	H2O2 85 %	H2O2 85 %	
2	LOX	H2O2 85 %	H2O2 95 %	H2O2 85 %	H2O2 95 %	
3	LOX	H2O2 85 %	H2O2 95 %	H2O2 85 %	H2O2 95 %	
GLOW [t]	11,0	11,2	11,3	13,7	13,7	
Payload (LEO) [kg]	72	51	72	50	71	
Payload (LEO) [%]	0,65	0,46	0,64	0,36	0,52	

Conclusion

- Increase of payload capacity by ~ 41 % after increasing H_2O_2 concentration to 95 %
- Only 95 % H₂O₂ results in payload capacity comparable to LOX (outer envelope = constant) !

Micro Satellite Launch Vehicle – results

Performance summary of selected design cases

Stage	Propellant combinations (fuel: all stages EtOH)				outer envelope = const. ! (diameter, height)	
1	LOX	LOX	LOX	H2O2 85 %		
2	LOX	LOX	H2O2 95 %	H2O2 95 %		
3	LOX	H2O2 95 %	H2O2 95 %	H2O2 95 %		
GLOW [t]	11,0	11,0	11,3	13,7	•	
Payload (LEO) [kg]	72	73	72	71	-	
Payload (LEO) [% GLOW]	0,65	0,66	0,64	0,52	-	
					-	
H2O2 driven upper stage	s:					
reduced system complexit	-					

Conclusion

- Projected payload can be realized by different oxidizer / stage combinations
- In terms of payload the use of 95 % H₂O₂ is equivalent to LOX, but comes along with significant advantages !
- Most suitable propellant system depending on specific boundary conditions (availability of propellants, experience, storability issues, preference of team...)
 - => No final, general recommendation can be given

Low cost propulsion system considered (one) key component to realize low cost Micro Satellite Launches !

How to achieve low cost propulsion ?

- Simplified design of rocket engines and turbo pumps
- Low-level operational parameter (chamber pressure, temperature)
- Use of low cost materials and manufacturing technologies
- Unification of propulsion system design for first and second stages via clustering (identical propellants assumed !)
- Prefer numbering-up instead of scale-up
- Environmentally benign and easy to handle propellant components (LOX resp. H₂O₂, EtOH)

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 16; 2014-05-20

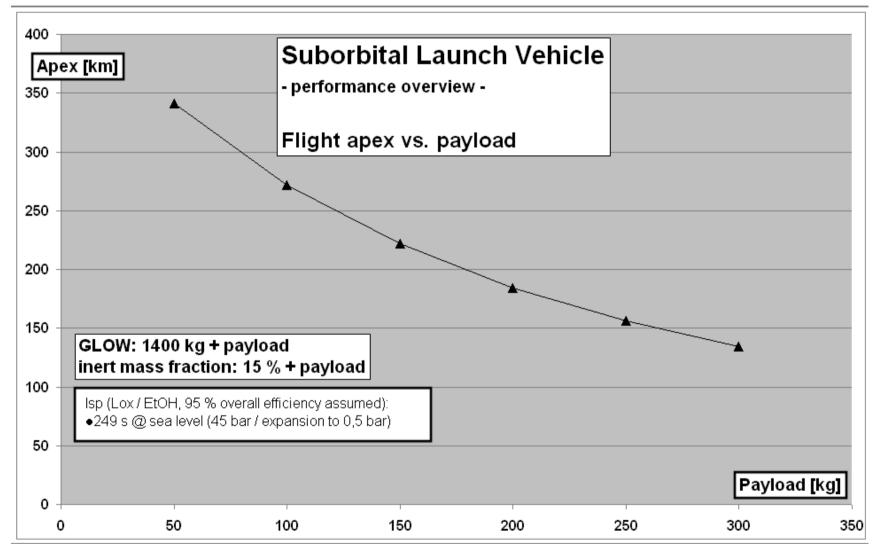
Additional use of MSLV propulsion hardware ? Suborbital Launch Vehicle !

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 17; 2014-05-20

Suborbital Launch Vehicle – development approach

Micro Satellite Launch Vehicle (MSLV): incremental development process

• 2nd stage: used for development / validation of key technology fields !


Combination of 2nd stage MSLV and payload section of <u>existing</u>, <u>commercial</u> <u>sounding rockets</u> feasible ?

- => independence of surplus military booster
- => Qualified equipment could be re-used (data acquisition + downlink, power supply, telemetry...)
- => eventually significant increase of payload / flight apex / zero-g time possible (depending on present configuration !)

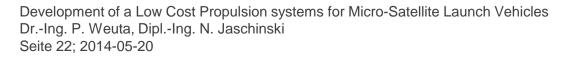
Suborbital Launch Vehicle – flight parameter

• Wide range of flight parameter realizable: first simulation results

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 19; 2014-05-20

Next steps:

discuss options with present users of commercial sounding rockets


Current development: Turbo Pump Unit

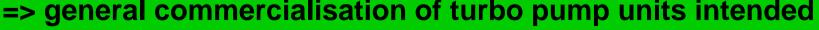
Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 21; 2014-05-20

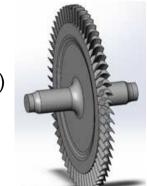
Current Development: Turbo Pump Unit – overview

- Goal: minimize engineering, testing + manufacturing effort by low level operational parameter
 - Exit pressure: max. 75 bar
 - Max. 30,000 RPM; single shaft design
 - Open gas generator cycle (LOX / EtOH or H₂O₂:)
- Propellant systems: LOX / EtOH (HTP / EtOH)
- Mass flow rate: ~ 14 kg/s LOX / EtOH (35 kN engine)
- Turbine
 - Single axial stage, impulse type
 - Inlet temperature: < 850 K
- Pump
 - Single radial stage
- Weight: max.35 kg (incl. gas generator + control unit)
- Arrangement: turbine EtOH oxidizer

University of Applied Sciences Cologne (2012) -

Status


- Detailed construction in progress (completion: September 2014)
- Manufacturing: August November 2014 (mainly conducted in workshop of WEPA--Technologies)
- Start of prototype qualification: December 2014 -


=> general commercialisation of turbo pump units intended

Current Development: Turbo Pump Unit – overview

Cooperation partner

- Technical University of Dresden (present) (Institute for Aerospace Engineering / Chair for Space Systems: Prof. Tajmar / Dr. Przybilski))
- (Institute for Product Development and Construction Technology: Prof. Mueller)

TU-DD 2014 (H. Wolter)

Current Development: Liquid Propellant Engines

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 24; 2014-05-20

Development of Liquid Propellant Engines

Overview

- Goal: construction of low cost engines
 - => Significant reduction of development and production costs required
- Approach: improve designs based on proven technologies (USA / USSR 1950 – 1970)
- Use of 'green propellants' (LOX / EtOH, H₂O₂ / EtOH)
 - => No significant environmental issues (test & launch area)
- Thrust range: 10 60 kN
 - Increase to level of 100 200 kN mid term goal
- Potential applications
 - Sounding rockets
 - Launch vehicles
 - Defence (Air, Ground, Naval)

Development of Liquid Propellant Engines

Current development (technology demonstrator)

Operating parameter

- Thrust
 - 35 kN
- Chamber pressure:
 - 5 MPa
- Nozzle exit pressure: (adapted to working altitude)
 - 0.05 MPa / 0.005 MPa
- Propellants:
 - LOX / EtOH
 - H₂O₂ / EtOH
- Construction overview
 - Injector: swirl type
 - Regenerative cooling: LOX / EtOH, H₂O₂ / EtOH
 - Thrust chamber: use series production enabling technologies (welding, brazing)

=> commercialisation of LPRE intended

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 26; 2014-05-20

Supply of H_2O_2 (c > 88 %)

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 27; 2014-05-20

Supply of H_2O_2 (c > 88 - 97 %)

Motivation (see section "Micro Satellite Launch Vehicle")

- Use of H₂O₂ in upper stages: likely to significantly increase operational reliability
- Increase of H₂O₂ concentration (85 => 95 %): identical payload compared to LOX (outer envelope kept constant !)

Commercial Supply situation (present)

- Very limited availability at c > 88 %
- Transport via public ground prohibited by law

=> on site production in specialized plants required !

- Small production plants cannot be rented, only bought (> 1,8 Mio EUR, ~ 1 kg H₂O₂ / h)
- => Not very attractive situation for developing very high concentration, H₂O₂ based propulsion processes....

Supply of H₂O₂ (c : 88 - 97 %)

Present activities at WEPA-Technologies

- <u>Development of very safe, automated, low temperature concentration technologies (max. 97</u>
 <u>%)</u> (cooperation with external partner)
 - Mobile production plant ("car trailer sized")
 - About 10 kg / h production capacity (starting material: $60 85 \% H_2O_2$)
 - Production has to be conducted at customers site (400 V / 16 A; water required)
 - <u>World wide operation by WEPA personal possible</u> (precondition: compliance with EC export rules)

Status and timeline (WEPA process)

- At present: Lab scale validation (non mobile plant setup)
- Timeline for completion of mobile plant does depend on market demand / customer requests

Applications

- Booster and upper stages (launch vehicles or sounding rockets: LPRE or hybrid type)
- Station keeping
- Gas generators
- Defense (Air, Land, Naval)

=> general commercialisation of H₂O₂ supply intended (90 – 97 %) => customer requests welcome !

Summary

Present development at WEPA-Technologies GmbH

- Liquid propellant rocket engines incl. turbo pump units
 - Present: 35 kN LPRE technology demonstrator (LOX/EtOH; H₂O₂ / EtOH + TPU)
 - Possible application: booster for sounding rockets
 - > Better variability of payload size / max. altitude
 - > Significantly lower safety issues due to lack of solid propellants !
- H₂O₂
 - Development of mobile concentration unit
 - > Production of 97% on customers site
 - > Significant advantages in upper stage use (operational reliability)
- Preliminary design of Micro Satellite Launch Vehicle
 - 70 kg (LEO) (LOX / EtOH; H₂O₂ / EtOH)
 - 3 stage design, 15.3 m total height, 11 13.7 to GLOW
 - Use in 95 % concentration yields comparable performance to LOX (system view)

=> customer requests welcome !

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 30; 2014-05-20

Thank you for your attention !

peter.weuta@wepa-technologies.de www.wepa-technologies.de

Development of a Low Cost Propulsion systems for Micro-Satellite Launch Vehicles Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 31; 2014-05-20