Development of a Low Cost Suborbital Rocket for Small Satellite Testing and In-Space Experiments

8th Pico- and Nanosatellite Workshop (PiNa2015)

Würzburg, 2015-09-15

(extended presentation)

Dr.-Ing. Peter H. Weuta Dipl.-Ing. Neil Jaschinski

WEPA-Technologies GmbH

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 1; 2015-09-15

Introduction: WEPA-Technologies GmbH

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 2; 2015-09-15

Introduction: WEPA-Technologies GmbH

- Background
 - Founded in 2011 via spin-off (origin: mechanical engineering company)
- Company focus
 - Engineering-, Automation- and Aerospace-Solutions

Business premises

- 700m² work shop area
- 150 m² office space

=> R&D focussed engineering office and manufacturing company

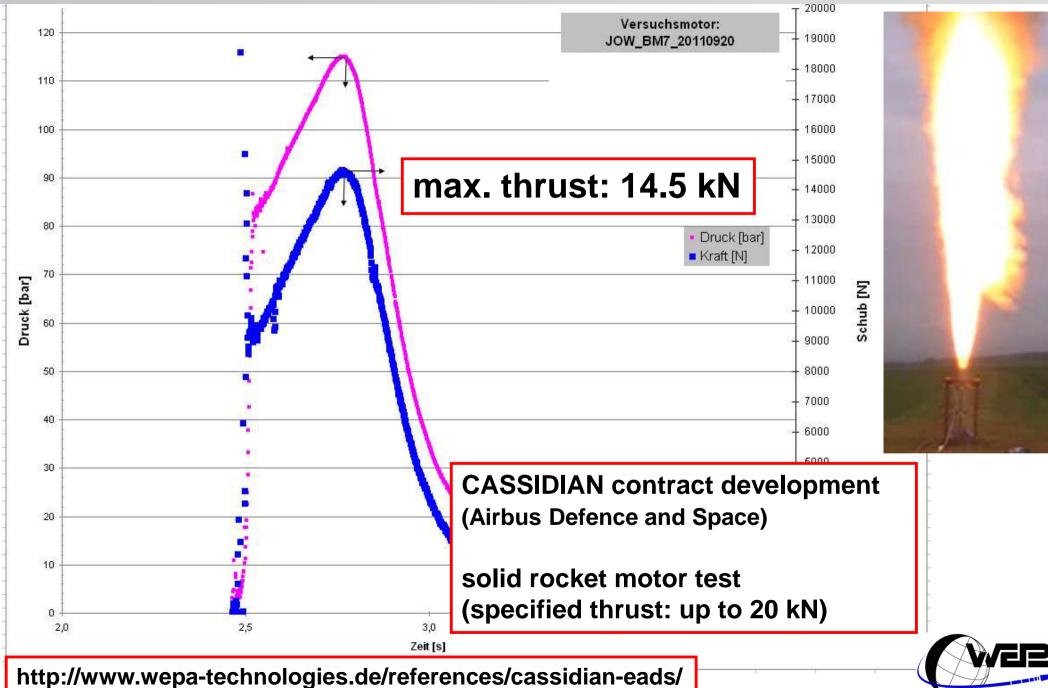
Business Activities

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 4; 2015-09-15

Business Activities (Manufacturing)

Generell

- Planning, development and realization of non-standard solutions
- Manufacturing of prototypes and small lots (company owned workshop)
- Broad range of manufacturing technologies
 - CNC-machining
 - > Turning (max. 1.4 m diameter x 4 m length) (up to 4 axis)
 - Milling (max. 3.0 m x 0.8 m x 0.8 m) (up to 5 axis)
 - Metal spinning
 - > Wire eroding
 - Conventional machining
 - > Grinding, welding, sheet metal work
- Public references include...
 - CASSIDIAN GmbH (Airbus Defence & Space)
 - Dynamit Nobel Defence GmbH
 - EU-customer (H₂O₂ concentration plant)


Business Activities (Rocket Technology)

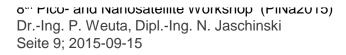
Business and development segments

- Rocket technology (development)
 - Propulsion
 - Liquid propellant rocket engines (LPRE)
 - Turbo pumps for LPRE
 - Solid rocket motors (SRM)
 - (Complete systems)
 - Suborbital sounding rockets (propulsion unit)
 - H₂O₂ concentration plants (max. 98 %)
- Engineering (business)
 - Construction and manufacturing of mechanical parts
- Automation (business)
 - Focus on control retrofits of CNC-machine tools

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 6; 2015-09-15 CASSIDIAN contract development (Airbus Defence & Space) solid rocket motor test (thrust: 20 kN)

Business Activities (Rocket Technology)

Technologies


Use of Sounding Rockets in PiNa-Development

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 8; 2015-09-15

Pre-testing of technology components

- Transport of satellites to LEO or beyond comes along with long lead time and costs up to 100 kEUR / kg (still secondary payload rides !)
 - Very reliable systems required to guarantee long term operability in orbit !
- Some pre-testing can be conducted on Earth, other require space specific conditions
 - Zero-gravity, high vacuum, cosmic radiation or communication over long distance (Earth \IDR LEO)
- Repeatability of testing important
 - Realization of test sequences via sounding rocket flights possible

Conceptional Design of Sounding Rocket "SILBERPFEIL" ("Silver Arrow")

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 10; 2015-09-15

Central Design Decision: Liquid- or Solid Propellant Rocket Engines ?

By far most sounding rockets use Solid Rocket Motor propulsion systems

- Surplus military motors
 - ready availability not always given
- Very high acceleration of vehicle
 - significant stress on payload
- Thrust / time profile and total impulse cannot be modified
- Safety and cost issues using solid propellants
 - <u>regulations for "explosives" becoming even more stringent:</u>
 - transport
 - storage
 - handling / on site integration

Conclusion: Solid Rocket Motors show significant disadvantages for frequent low cost launches !

Central Design Decision: Liquid- or Solid Propellant Rocket Engines ?

Advantages of Liquid Propellant Rocket Engines

- Completely safe handling of rocket during payload integration, handling and transport (=> fuel tanks empty)
 - no stringent safety regulations to be followed
- Low peak acceleration
 - low stress on payload
- Launch readiness can be kept up for many weeks: responsive, very low lead time launch possible (while using storable, H₂O₂ oxidizer)
- Environmentally friendly ("green") propellants (while using H₂O₂ or O₂ oxidizer and Kerosene fuel)

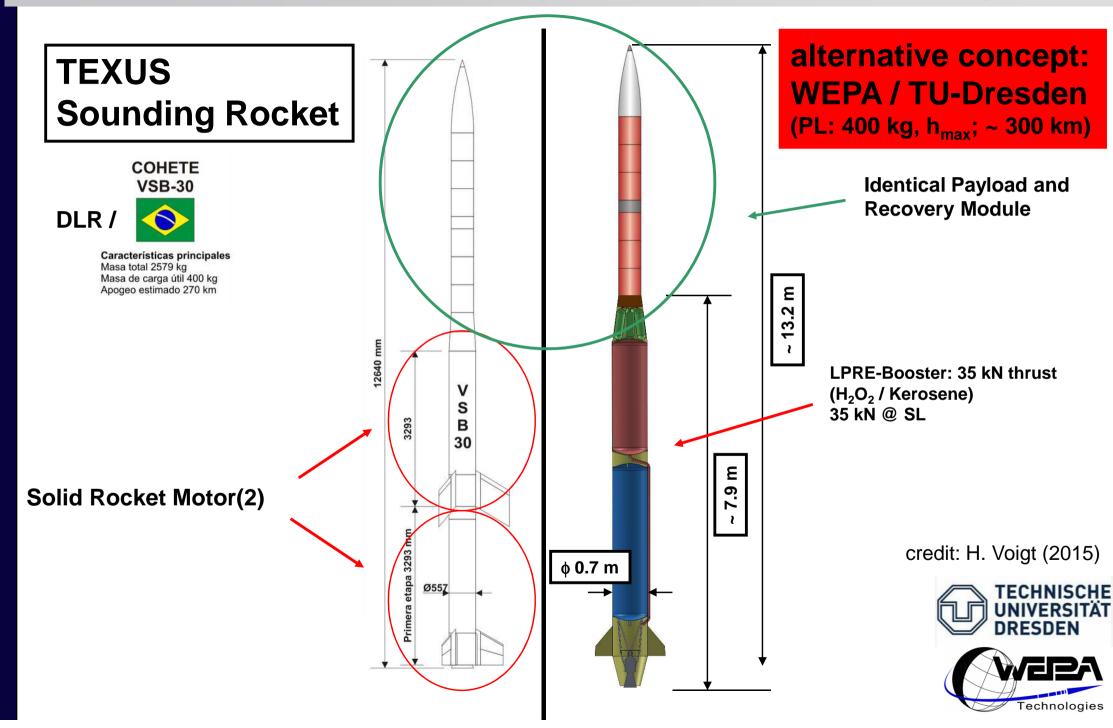
Conclusion:

Liquid propellant rocket engines show significant advantages for frequent launches ...but have to be made low-priced !

Central Design Goal: Low Cost !

Low cost characteristics of sounding rockets can be achieved by multiple, parallel approaches (focus: propulsion system):

- Significantly reduced safety regulations due to avoidance of explosives (solid propellants)
- Simplified design of propulsion system (rocket engine and turbo pumps)
- Low level operational parameters (chamber pressure)
- Environmentally benign and easy to handle propellant components (H₂O₂ / Kerosene)
- Simple tank structures / no thermal isolation; common bulkhead
- Low-cost materials and manufacturing technologies
 - avoid typical aerospace grade materials and manufacturing processes
- Simple guidance systems / thrust vector control for ballistic flight required
- Goal: 1900 3800 EUR / kg @ 400 kg (300 km) payload (0,75 1,5 Mio EUR)
 - Depending on flight rate and depreciation of development costs
 - Ground support not included


Preliminary Design of Sounding Rocket: Definition of Payload Section

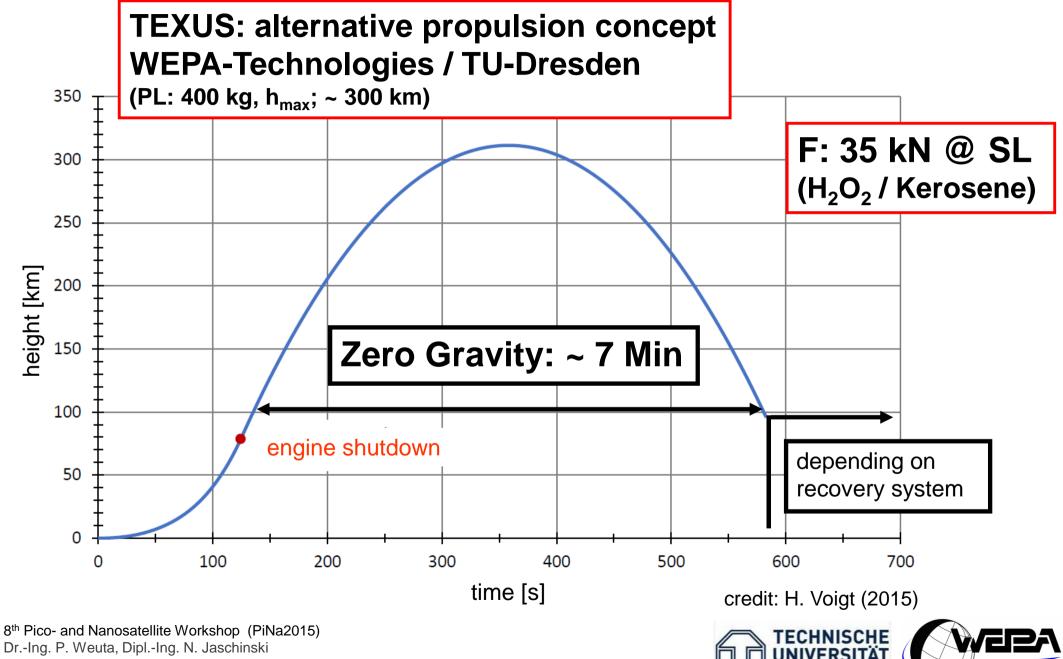
Payload section is very specific to mission requirements

- Can be adapted to customers needs: length, diameter, total mass
- Choose representative (commercial) payload size: TEXUS module (DLR, ~ 400 kg)
 - Advantages: qualified equipment could be re-used (data acquisition + downlink, power supply, telemetry, recovery systems...)
- Use 35 kN technology demonstrator engine
 - Thrust / time profile could be adapted to mission's needs

TEXUS: SRM vs. LPRE-Propulsion? Different Concepts

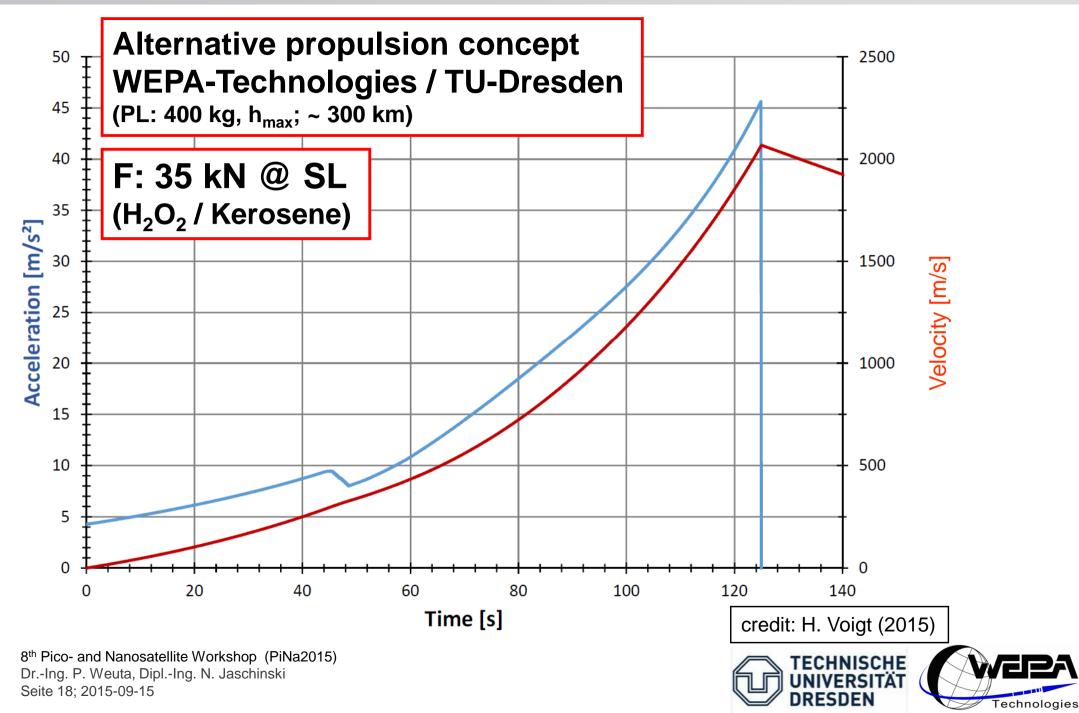
Summary of results: TEXUS Module via LPRE booster

Comparison of Main Parameters:			
Payload: TEXUS-modul			
<u>VSB</u>	-30 base case	WEPA / TU	-DD concept
Overall System			
payload / communication / recovery	DLR-Standard	DLR-Standard	
max. height of flight	~ 270	~ 300	[km]
GLOW	2600	2790	[kg]
max. diameter	0,57	0,7	[m]
total length	12,6	13,2	[m]
Payload Module incl. Recover			
length	4,5 - 5,5	4,5 - 5,5	[m]
diameter	0,44	0,44	[m]
mass	max. 400	max. 400	[kg]
Propulsion System			
number of stages	2	1	[-]
propellants	solid	liquid	[-]
propallant mass	~ 1575	2050	[kg]
max. accelaration	~ 12	4,65	[g]
burn time	31 (11 + 20)	125	[s]


Conclusion:

- Identical max. height (300 km) and payload capacity (400 kg)
- Significantly reduced maximum acceleration => lower stress on payload (4.7 g vs. 12 g)
 - Comparable GLOW and outer envelope of complete system
 - Reduced safety requirements: no danger during handling, transport, storage
 - (Reliable availability of propulsion modules)

credit: H. Voigt (2015)


TEXUS Module via LPRE Booster: Simulated Trajectory 1

Technologies

Seite 17; 2015-09-15

TEXUS module via LPRE booster: simulated trajectory

2

Enabling Technologies of Sounding Rocket "SILBERPFEIL":

- H₂O₂-Concentration Plants
- Liquid Propulsion Rocket Engines
- Turbo Pump Units

H₂O₂-Concentration Technology

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 20; 2015-09-15

Supply of H_2O_2 (c > 88 - 98 %)

Motivation

- Due to non-cryogenic nature of H₂O₂ overall system architecture is significantly reduced (no isolation required, no formation of ice, less complicated TPU)
- H₂O₂-based propulsion systems show very high operational reliability
- Very high strength H_2O_2 required for high performance propulsion systems
- Increase of H₂O₂ concentration (85 => 95 %): identical payload capacity compared to LOX (outer envelope kept constant !)

(see section "Micro Satellite Launch Vehicle" / WEPA-Presentation at SpacePropulsion 2014: http://www.wepa-technologies.de/news/june-2014/)

Commercial supply situation (present)

- Very limited availability at c > 88 %
- Transport via public ground prohibited by law
 - => on site production in specialized plants required !
- Small production plants cannot be rented, only bought
 (> 1,8 Mio EUR, ~ 1 kg H₂O₂ / h)
- => not very attractive situation for developing / using H₂O₂ based propulsion processes....

Supply of H_2O_2 (c > 88 - 98 %)

- H₂O₂ concentration plant developed by WEPA-Technologies for EUcustomer
 - Capacity: up to ~ 40 kg / d (- 90 %)
 - Feed: 50 % 70 % H₂O₂
 - Fully automatic, 24 / 7 operability
- Working packages supplied by WEPA-Technologies
 - Conceptional process design incl. safety concept
 - Detail Engineering (process-, control- and electrical diagrams)
 - Equipment purchase
 - Erection and commissioning

Reference plant open to customer visits (final commissioning: 10/2015)

 Very safe production process up to 98 % concentration under development (10 kg / h)

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 22; 2015-09-15

Supply of H₂O₂ (90 %) : Reference Plant

EU - customer

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 23; 2015-09-15

Development of Liquid Propellant Engines

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 24; 2015-09-15

Development of LPRE

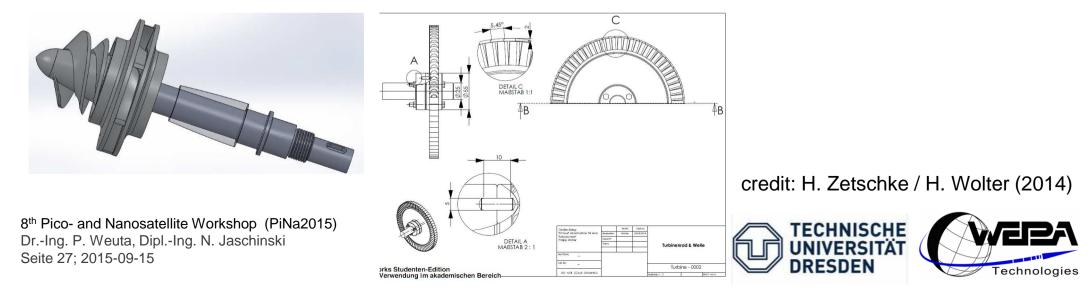
Overview

Goal: construction of low cost engines

=> Significant reduction of development and production costs required

- Approach: improve designs based on proven technologies (USA / USSR / Europe 1960 – 1980)
- Use of 'green propellants' (LOX / H₂O₂ : EtOH / Kerosin)
 => No significant environmental issues (test & launch area)
- Thrust range: 10 60 kN
 - increase to level of 100 200 kN mid term goal
- Present development: 35 kN technology demonstrator
 - Chamber pressure: 5 MPa
 - Exit pressure: 0,5 MPa
 - Regenerative cooling

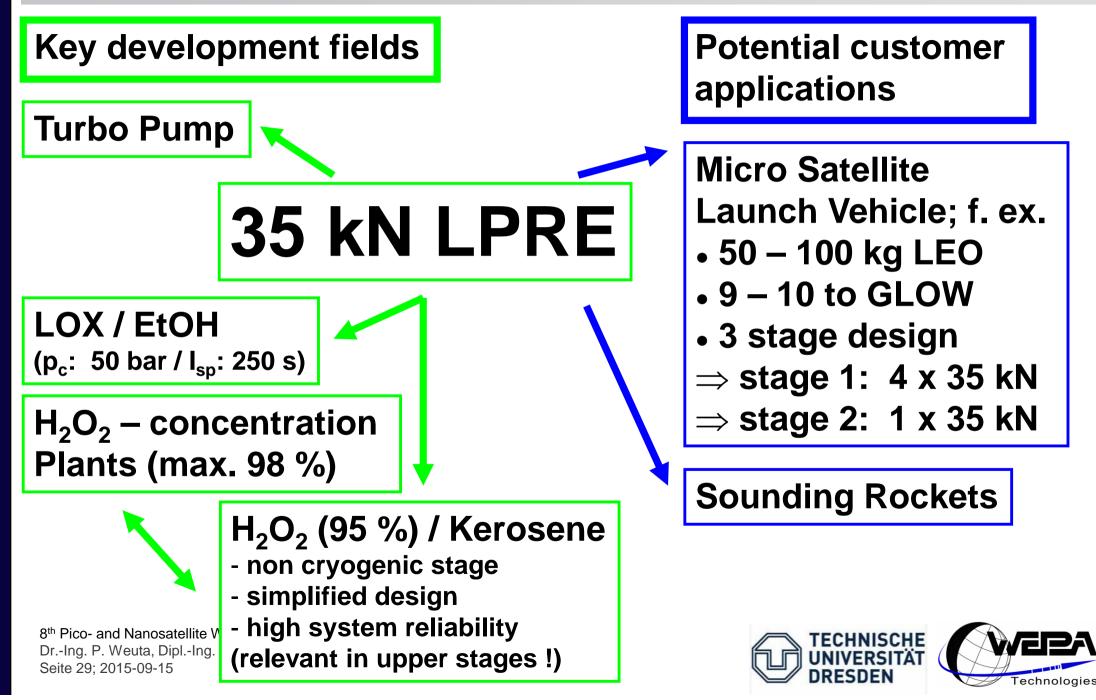
Technologies


Turbo Pump Units

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 26; 2015-09-15

Current Development: Turbo Pump Units – overview

- Goal: minimize engineering, testing and manufacturing effort by low level operational parameter
 - Exit pressure: max. 75 bar
 - Operating point: max. 30,000 RPM
 - Open gas generator cycle (H₂O₂ or LOX / Kerosene)
- Propellant systems: H₂O₂ / Kerosene (LOX / Kerosene)
- Mass flow rate: ~ 14.5 kg/s H₂O₂ / Kerosene (35 kN engine)
- Weight: max.35 kg (incl. gas generator + control unit)
- Arrangement:
- Turbine H_2O_2 Kerosene (Turbine Kerosene LOX)



General Development Strategy: Rocket Technology

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 28; 2015-09-15

Present Development Strategy

Summary

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 30; 2015-09-15

Summary

- Basic design parameter of a LPRE-propelled sounding rocket ("SILBERPFEIL") were described
 - Due to non-cryogenic nature of H₂O₂ overall system architecture is significantly reduced
- TEXUS payload module (400 kg) has been chosen for reference
 - 300 km height / ~ 7 min zero-g time
 - Other geometries / masses of payload section can be considered
- WEPA-Technologies is developing key propulsion-technologies (LPRE resp. turbo pumps) and H₂O₂ - concentration plants independent of the realization of sounding rocket projects
- To initiate development of the payload section and complete sounding rocket WEPA-Technologies is open to cooperations

Poster Session

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 32; 2015-09-15

Thank you for your attention !

peter.weuta@wepa-technologies.de www.wepa-technologies.de

8th Pico- and Nanosatellite Workshop (PiNa2015) Dr.-Ing. P. Weuta, Dipl.-Ing. N. Jaschinski Seite 34; 2015-09-15